OpenCV学习 | 图像矫正技术

  • 内容
  • 评论
  • 相关

OpenCV学习 | 图像矫正技术

那什么是图像的矫正呢?举个例子就好明白了。

我的好朋友小明给我拍了这几张照片,因为他的拍照技术不咋地,照片都拍得歪歪扭扭的,比如下面这些照片:

人民币
OpenCV学习 | 图像矫正技术

发票
OpenCV学习 | 图像矫正技术

文本
OpenCV学习 | 图像矫正技术

这些图片让人看得真不舒服!看个图片还要歪脖子看,实在是太烦人了!我叫小明帮我扫描一下一本教科书,小明把每一页书都拍成上面的文本那样了。好气啊那该怎么办呢?一页一页用PS来处理?1000页的矫正啊,当然交给计算机去做!

真的,对于图像矫正的问题,在图像处理领域还真得多,比如人民币的矫正、文本的矫正、车牌的矫正、身份证矫正等等。这些都是因为拍摄者总不可能100%正确地拍摄好图片,这就要求我们通过后期的图像处理技术将图片还原好,才能进一步做后面的处理,比如数字分割啊数字识别啊,不然歪歪扭扭的文字数字,想识别出来估计就很难了。

上面几个图,我们在日常生活中遇到的可不少,因为拍摄时拍的不好,导致拍出来的图片歪歪扭扭的,很不自然,那么我们能不能把这些图片尽可能地矫正过来呢?

OpenCV告诉我们,没问题!工具我给你,算法你自己设计!

比如图一,我要想将人民币矫正,并且把人民币整个抠出来保存,该怎么做?那就涉及到了图像的矫正和感兴趣区域提取两大技术了。

总的来说,要进行进行图像矫正,至少有以下几项知识储备:

  • 轮廓提取技术

  • 霍夫变换知识

  • ROI感兴趣区域知识

下面以人民币矫正、发票矫正、文本矫正为例,一步步剖析如何实现图像矫正。

首先分析如何矫正人民币。

比如我们要矫正这张人民币,思路应该是怎么样?
OpenCV学习 | 图像矫正技术

首先分析这张图的特点。

在这张图里,人民币有一定的倾斜角度,但是角度不大;人民币的背景是黑色的,而且人民币的边缘应该比较明显。

没错,我们就抓住人民币的的边缘比较明显来做文章!我们是不是可以先把人民币的轮廓找出来(找出来的轮廓当然就是一个大大的矩形),然后用矩形去包围它,得到他的旋转角度,然后根据得到的角度进行旋转,那样不就可以实现矫正了吗!

再详细地总结处理步骤:

  1. 图片灰度化

  2. 阈值二值化

  3. 检测轮廓

  4. 寻找轮廓的包围矩阵,并且获取角度

  5. 根据角度进行旋转矫正

  6. 对旋转后的图像进行轮廓提取

  7. 对轮廓内的图像区域抠出来,成为一张独立图像

我把该矫正算法命名为基于轮廓提取的矫正算法,因为其关键技术就是通过轮廓来获取旋转角度。


#include "opencv2/imgproc.hpp"

#include "opencv2/highgui.hpp"

#include <iostream>

using namespace cv;

using namespace std;


//第一个参数:输入图片名称;第二个参数:输出图片名称

void GetContoursPic(const char* pSrcFileName, const char* pDstFileName)

{

    Mat srcImg = imread(pSrcFileName);

    imshow("原始图", srcImg);

    Mat gray, binImg;

    //灰度化

    cvtColor(srcImg, gray, COLOR_RGB2GRAY);

    imshow("灰度图", gray);

    //二值化

    threshold(gray, binImg, 100, 200, CV_THRESH_BINARY);

    imshow("二值化", binImg);


    vector<vector<Point> > contours;

    vector<Rect> boundRect(contours.size());

    //注意第5个参数为CV_RETR_EXTERNAL,只检索外框  

    findContours(binImg, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); //找轮廓

    cout << contours.size() << endl;

    for (int i = 0; i < contours.size(); i++)

    {

        //需要获取的坐标  

        CvPoint2D32f rectpoint[4];

        CvBox2D rect =minAreaRect(Mat(contours[i]));


        cvBoxPoints(rect, rectpoint); //获取4个顶点坐标  

        //与水平线的角度  

        float angle = rect.angle;

        cout << angle << endl;


        int line1 = sqrt((rectpoint[1].y - rectpoint[0].y)*(rectpoint[1].y - rectpoint[0].y) + (rectpoint[1].x - rectpoint[0].x)*(rectpoint[1].x - rectpoint[0].x));

        int line2 = sqrt((rectpoint[3].y - rectpoint[0].y)*(rectpoint[3].y - rectpoint[0].y) + (rectpoint[3].x - rectpoint[0].x)*(rectpoint[3].x - rectpoint[0].x));

        //rectangle(binImg, rectpoint[0], rectpoint[3], Scalar(255), 2);

        //面积太小的直接pass

        if (line1 * line2 < 600)

        {

            continue;

        }


        //为了让正方形横着放,所以旋转角度是不一样的。竖放的,给他加90度,翻过来  

        if (line1 > line2) 

        {

            angle = 90 + angle;

        }


        //新建一个感兴趣的区域图,大小跟原图一样大  

        Mat RoiSrcImg(srcImg.rows, srcImg.cols, CV_8UC3); //注意这里必须选CV_8UC3

        RoiSrcImg.setTo(0); //颜色都设置为黑色  

        //imshow("新建的ROI", RoiSrcImg);

        //对得到的轮廓填充一下  

        drawContours(binImg, contours, -1, Scalar(255),CV_FILLED);


        //抠图到RoiSrcImg

        srcImg.copyTo(RoiSrcImg, binImg);



        //再显示一下看看,除了感兴趣的区域,其他部分都是黑色的了  

        namedWindow("RoiSrcImg", 1);

        imshow("RoiSrcImg", RoiSrcImg);


        //创建一个旋转后的图像  

        Mat RatationedImg(RoiSrcImg.rows, RoiSrcImg.cols, CV_8UC1);

        RatationedImg.setTo(0);

        //对RoiSrcImg进行旋转  

        Point2f center = rect.center;  //中心点  

        Mat M2 = getRotationMatrix2D(center, angle, 1);//计算旋转加缩放的变换矩阵 

        warpAffine(RoiSrcImg, RatationedImg, M2, RoiSrcImg.size(),1, 0, Scalar(0));//仿射变换 

        imshow("旋转之后", RatationedImg);

        imwrite("r.jpg", RatationedImg); //将矫正后的图片保存下来

    }


#if 1

    //对ROI区域进行抠图


    //对旋转后的图片进行轮廓提取  

    vector<vector<Point> > contours2;

    Mat raw = imread("r.jpg");

    Mat SecondFindImg;

    //SecondFindImg.setTo(0);

    cvtColor(raw, SecondFindImg, COLOR_BGR2GRAY);  //灰度化  

    threshold(SecondFindImg, SecondFindImg, 80, 200, CV_THRESH_BINARY);

    findContours(SecondFindImg, contours2, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);

    //cout << "sec contour:" << contours2.size() << endl;


    for (int j = 0; j < contours2.size(); j++)

    {

        //这时候其实就是一个长方形了,所以获取rect  

        Rect rect = boundingRect(Mat(contours2[j]));

        //面积太小的轮廓直接pass,通过设置过滤面积大小,可以保证只拿到外框

        if (rect.area() < 600)

        {

            continue;

        }

        Mat dstImg = raw(rect);

        imshow("dst", dstImg);

        imwrite(pDstFileName, dstImg);

    }

#endif



}



void main()

{

    GetContoursPic("6.jpg", "FinalImage.jpg");

    waitKey();

}



效果依次如下:
原始图
OpenCV学习 | 图像矫正技术

二值化图
OpenCV学习 | 图像矫正技术

掩膜mask是这样的
OpenCV学习 | 图像矫正技术

旋转矫正之后
OpenCV学习 | 图像矫正技术

将人民币区域抠出来
OpenCV学习 | 图像矫正技术

该算法的效果还是很不错的!那赶紧试试其他图片,我把倾斜的发票图像拿去试试。

原始图
OpenCV学习 | 图像矫正技术

倾斜矫正之后
OpenCV学习 | 图像矫正技术

最后把目标区域抠出来,成为单独的照片。
OpenCV学习 | 图像矫正技术

上面的算法可以很好的处理人民币和发票两种情况的倾斜矫正,那文本矫正可以吗?我赶紧试了一下,结果是失败的。

原图
OpenCV学习 | 图像矫正技术

算法矫正后,还是原样,矫正失败。
OpenCV学习 | 图像矫正技术

认真分析一下,还是很容易看出文本矫正失败的原因的。

原因就在于,人民币图像和发票图像他们有明显的的边界轮廓,而文本图像没有。文本图像的背景是白色的,所以我们没有办法像人民币发票那类有明显边界的矩形物体那样,提取出轮廓并旋转矫正。

经过深入分析可以看出,虽然文本类图像没有明显的边缘轮廓,但是他们有一个很重要的特征,那就是每一行文字都是呈现一条直线形状,而且这些直线都是平行的!

对于这种情况,我想到了另一种方法:基于直线探测的矫正算法

首先介绍一下我的算法思路:

  1. 用霍夫线变换探测出图像中的所有直线

  2. 计算出每条直线的倾斜角,求他们的平均值

  3. 根据倾斜角旋转矫正

  4. 最后根据文本尺寸裁剪图片

然后给出OpenCV的实现算法:


#include "opencv2/imgproc.hpp"

#include "opencv2/highgui.hpp"

#include <iostream>

using namespace cv;

using namespace std;


#define ERROR 1234


//度数转换

double DegreeTrans(double theta)

{

    double res = theta / CV_PI * 180;

    return res;

}



//逆时针旋转图像degree角度(原尺寸)    

void rotateImage(Mat src, Mat& img_rotate, double degree)

{

    //旋转中心为图像中心    

    Point2f center;

    center.x = float(src.cols / 2.0);

    center.y = float(src.rows / 2.0);

    int length = 0;

    length = sqrt(src.cols*src.cols + src.rows*src.rows);

    //计算二维旋转的仿射变换矩阵  

    Mat M = getRotationMatrix2D(center, degree, 1);

    warpAffine(src, img_rotate, M, Size(length, length), 1, 0, Scalar(255,255,255));//仿射变换,背景色填充为白色  

}


//通过霍夫变换计算角度

double CalcDegree(const Mat &srcImage, Mat &dst)

{

    Mat midImage, dstImage;


    Canny(srcImage, midImage, 50, 200, 3);

    cvtColor(midImage, dstImage, CV_GRAY2BGR);


    //通过霍夫变换检测直线

    vector<Vec2f> lines;

    HoughLines(midImage, lines, 1, CV_PI / 180, 300, 0, 0);//第5个参数就是阈值,阈值越大,检测精度越高

    //cout << lines.size() << endl;


    //由于图像不同,阈值不好设定,因为阈值设定过高导致无法检测直线,阈值过低直线太多,速度很慢

    //所以根据阈值由大到小设置了三个阈值,如果经过大量试验后,可以固定一个适合的阈值。


    if (!lines.size())

    {

        HoughLines(midImage, lines, 1, CV_PI / 180, 200, 0, 0);

    }

    //cout << lines.size() << endl;


    if (!lines.size())

    {

        HoughLines(midImage, lines, 1, CV_PI / 180, 150, 0, 0);

    }

    //cout << lines.size() << endl;

    if (!lines.size())

    {

        cout << "没有检测到直线!" << endl;

        return ERROR;

    }


    float sum = 0;

    //依次画出每条线段

    for (size_t i = 0; i < lines.size(); i++)

    {

        float rho = lines[i][0];

        float theta = lines[i][1];

        Point pt1, pt2;

        //cout << theta << endl;

        double a = cos(theta), b = sin(theta);

        double x0 = a*rho, y0 = b*rho;

        pt1.x = cvRound(x0 + 1000 * (-b));

        pt1.y = cvRound(y0 + 1000 * (a));

        pt2.x = cvRound(x0 - 1000 * (-b));

        pt2.y = cvRound(y0 - 1000 * (a));

        //只选角度最小的作为旋转角度

        sum += theta;


        line(dstImage, pt1, pt2, Scalar(55, 100, 195), 1, LINE_AA); //Scalar函数用于调节线段颜色


        imshow("直线探测效果图", dstImage);

    }

    float average = sum / lines.size(); //对所有角度求平均,这样做旋转效果会更好


    cout << "average theta:" << average << endl;


    double angle = DegreeTrans(average) - 90;


    rotateImage(dstImage, dst, angle);

    //imshow("直线探测效果图2", dstImage);

    return angle;

}



void ImageRecify(const char* pInFileName, const char* pOutFileName)

{

    double degree;

    Mat src = imread(pInFileName);

    imshow("原始图", src);

    Mat dst;

    //倾斜角度矫正

    degree = CalcDegree(src,dst);

    if (degree == ERROR)

    {

        cout << "矫正失败!" << endl;

        return;

    }

    rotateImage(src, dst, degree);

    cout << "angle:" << degree << endl;

    imshow("旋转调整后", dst);


    Mat resulyImage = dst(Rect(0, 0, dst.cols, 500)); //根据先验知识,估计好文本的长宽,再裁剪下来

    imshow("裁剪之后", resulyImage);

    imwrite("recified.jpg", resulyImage); 

}



int main()

{

    ImageRecify("correct2.jpg", "FinalImage.jpg");

    waitKey();

    return 0;

}



看看效果。这是原始图
OpenCV学习 | 图像矫正技术

直线探测的效果。
OpenCV学习 | 图像矫正技术

矫正之后的效果。
OpenCV学习 | 图像矫正技术

我们发现矫正之后的图像有较多留白,影响观看,所以需要进一步裁剪,保留文字区域。

OpenCV学习 | 图像矫正技术

赶紧再试多一张。

原始图
OpenCV学习 | 图像矫正技术

直线探测
OpenCV学习 | 图像矫正技术

矫正效果
OpenCV学习 | 图像矫正技术

进一步裁剪
OpenCV学习 | 图像矫正技术

可以看出,基于直线探测的矫正算法在文本处理上效果真的很不错!

最后总结一下两个算法的应用场景:

  • 基于轮廓提取的矫正算法更适用于车牌、身份证、人民币、书本、发票一类矩形形状而且边界明显的物体矫正。

  • 基于直线探测的矫正算法更适用于文本类的矫正。



来源:http://www.cnblogs.com/skyfsm/p/6902524.html

始发于微信公众号:AI学习圈